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Membrane potential and spike train statistics depend distinctly on input statistics
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A description of how the activity of a population of neurons reflects the structure of its inputs is essential
for understanding neural coding. Many studies have examined how inputs determine spiking statistics, while
comparatively little is known about membrane potentials. We examine how membrane potential statistics are

related to input and spiking statistics. Surprisingly, firing rates and membrane potentials are sensitive to input
current modulations in distinct regimes. Additionally, the correlation between the membrane potentials of two
uncoupled cells and the correlation between their spike trains reflect input correlations in distinct regimes. Our
predictions are experimentally testable, provide insight into the filtering properties of neurons, and indicate that
care needs to be taken when interpreting neuronal recordings that reflect a combination of subthreshold and

spiking activity.
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I. INTRODUCTION

To understand dynamics and information processing in
neuronal networks it is important to examine how the inputs
to neurons shape their activity. Computational and theoretical
approaches to this problem typically focus on spiking activity.
However, action potentials are a sparse representation of a
cell’s response, while the subthreshold membrane potential
is continuously modulated by a cell’s inputs. In addition,
popular recording techniques such as voltage sensitive dyes
and local field potentials capture a mixture of subthreshold and
spiking activity. While the multivariate statistics of membrane
potential traces have been examined experimentally [1-4],
a theoretical approach to the problem has not been fully
developed [5].

We provide theoretical tools to examine how the statistics of
inputs to neurons determine the marginal and joint statistics of
their membrane potential activity. This approach also allows us
to study how membrane potential statistics are related to spik-
ing statistics. Counter to intuition, we find that current coded
signals are reliably reflected by membrane potentials and firing
rates in distinct regimes: Firing rates are most sensitive to
modulations of a cell’s input current when excitation is strong
and firing rates are high. In contrast, the mean membrane
potential is most sensitive to such modulations when excitation
is weak and firing rates low. In addition, we find that when
two uncoupled cells receive correlated inputs their spiking
correlations and membrane potential correlations are reflective
of the correlations between their inputs in distinct regimes.

These findings illuminate some fundamental filtering prop-
erties of neurons and have significant implications for the
interpretation of different types of experimental recordings.
For example, the correlation between two signals obtained
from voltage sensitive dyes or local field potentials can exhibit
a decrease in correlations when spiking correlations increase.

II. METHODS

We model two cells receiving correlated, stochastic input
using a leaky integrate-and-fire (LIF) model. Without loss of
generality, we scale and shift the voltage units so that the
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membrane capacitance is C,, = 1 and the leak current has
reversal potential at zero. Thus the membrane potential of cell
k = 1,2 obeys

dVy Vi :

— = —— + Joe(t) — Jiig(2) (1)

dt T
where e(1) = )", 8(r — t}) and ey(t) = > 8~ t},) are
correlated stationary point processes representing excitatory
inputs with rate r,, and similarly for the inhibitory inputs i; »()
with rate r;. The term J, (J;) represents the synaptic strength
of excitation (inhibition) and ,, the membrane time constant.
Additionally, whenever Vi (¢) exceeds threshold at Vi, a spike
is fired and the membrane potential reset to V;.. Output spike
trains are given by si(r) = >~ ; 8(t — t]), where ] is the time
of the jth spike of cell k. We denote the output firing rates by
ry. For notational convenience, we also define the total input
currents ing(¢t) = J, ex(t) — J; ix(t) with mean

n = (ink(t» = Jor. — Jir;.

For simplicity, the dynamics and input statistics of the two
cells are assumed to be statistically identical in the text, with
a general treatment given in the Appendexes.

We quantify the covariance between spike trains and
membrane potentials using the cross covariance C,(t) =
cov[ki(t),k2(t 4+ 7)], for « € {s,e,i,in,V} where cov(x,y) =
(xy) — (x){y), (-) denotes expectation, and processes are
assumed stationary and ergodic. The cross covariance between
the total input currents is related to the excitatory and inhibitory
cross covariances by

Cin(T) = J2Co(1) + JECi(T) — 2J,J;Coi(T), 2)

where C,;(t) = covle|(t),ir(t + T)] = cov[ii(t),e,(t + 7)].
Autocovariances are  defined similarly, A(r) =
cov[kg(t),kx(t + 7)]. To quantify the correlation between
membrane potentials we normalize the cross covariance to
obtain the Pearson normalized cross correlation (hereafter
referred to simply as cross correlation)

Cy(r)  cov[Vi(0),Va(t + 7)]
Av(0)  Nar[Vi(OIvar[Va(t + 0)]

Ry(7) = 3)
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which satisfies |Ry(t)| < 1 and where |Ryy(0)| = 1 implies
that the membrane potentials are perfectly correlated or
anticorrelated [i.e., Vi(t) = AV5(¢)].

The Pearson normalized cross correlation between point
processes is not defined since they have infinite variance (i.e.,
var[ky(t)] = oo for k € {e,i,in,s}) [6,7]. We instead consider
statistics of the spike counts, N, (t,52) = fl? ki (s)ds for
k € {in,s,e,i} and k = 1,2. Define the normalized spike count
variance ¢2(T) = var[ N, (¢t,t + T)]/ T, covariance y,(T) =
cov[Ni(t,t + T),Ny(t,t + T)]/T, and correlation p (T) =
V(1) /aX(T).

We next provide a general and intuitive derivation of
spiking and membrane potential statistics in the limits of
weak and strong excitation. The relation between the two
is then examined outside of these limits using a diffusion
approximation.

III. WEAK EXCITATION LIMIT

We begin by examining the response properties of a pair
of LIFs in a regime where spiking is rare, for instance, when
excitation is weaker than the combined current from inhibition
and leak (J,r, < Jiri + Vin/Tm). In this limit we find that
the mean membrane potentials reliably reflect the mean input
currents. In contrast the cells’ firing rates depend only weakly
on the mean input current. Additionally, correlations between
membrane potentials reflect input correlations, but spiking
correlations are nearly zero.

In the limit of weak excitation, the membrane potentials are
given by Eq. (1) without thresholding, and hence by linearly
filtered versions of the inputs. Standard signal processing
identities can be used to obtain the membrane potential
statistics [8]. The stationary mean of the membrane potentials
is proportional to the mean of the input current (V) = ut, so
that the gain of the membrane potential is given by

d(Vi)
dM - m-
The autocovariance and cross-covariance functions are ob-

tained by applying a linear filter to the input autocovariance
and cross-covariance functions

Ay(t) = (K x Aip)(t) and Cy(r) = (K * Cin)(7), (4

where K(v) = 1,,e1*V/™ /2. Thus, the integral correlation
coefficient of the input is preserved in the membrane potentials
in the sense that
[o¢] o
f;zo Cy(t)dt _ f;OOO Cin(r)dt _ lim pu(D).
[T Avmdr [T Ain(t)dT  T—oo

var(Vy) = Ay(0) =
cross-correlation

variance is
which gives the

The stationary
%5 An(K (1)t
function [cf. Eq. (3)].
Whereas membrane potential statistics reliably reflect input
statistics, the gain of the spike trains and the correlation
between spike trains are nearly zero when excitation is weak

dr;
du

and asymptotic expansions are known for each [9-12]. The
conclusion that spiking correlations vanish in the limit of weak

~0, Ci(t)~0 and p,(T)~0, (5)
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excitation requires an assumption that input correlations are
weak. However, spiking correlations are found to be nearly
zero when excitation is weak and input correlations are chosen
to be moderate in magnitude [9,10].

The results in this section were obtained by assuming
that excitation is weak so that spiking is rare. However, the
results are valid any time active spiking conductances have a
negligible impact, such as when spiking is suppressed either
pharmacologically or by injecting a hyperpolarizing current in
experiments [2,3]. See Sec. VID for further discussion.

IV. STRONG EXCITATION LIMIT

We now examine the response properties of two LIFs when
excitation is strong and firing rates are high. In this regime the
sensitivity to input currents is reversed: The mean membrane
potentials show a weak dependence, but the firing rates reflect
the mean input current reliably. Similarly, membrane potential
correlations are zero, but spiking correlations reflect input
correlations.

When excitation dominates the current across the mem-
brane (J.r, > J;r; + Vin/Tn), an approximation can be ob-
tained by ignoring the effects of inhibition and leak. Equa-
tion (1) is then replaced by the equation for a perfect integrator
[9,13]

da% = Jeex(1), (6)
with the same threshold and reset conditions. This model is
analyzed in Appendix A and we review the results here. Under
weak assumptions, we show that the bivariate distribution
of (Vi(¢),Va(t + 1)) is uniform, generalizing the univariate
result in Ref. [14]. We also assume that Vi, — V. is an integer
multiple of J,, which simplifies the exposition, but does not
significantly change the results.

The mean membrane potential is given by (Vi) = (Vip +
Vie)/2. Thus, the gain of the membrane potentials is zero in
this limit,

d{Vi)
du

=0.

Two random variables whose joint distribution is uniform are
necessarily independent, and therefore V(¢) is independent
from V,(t 4+ 7), and so

Cv(t) =Ry(1)=0 (N

for all 7. It is worth noting that this result is not valid when
the cells’ inputs are perfectly correlated since identical inputs
imply that the bivariate membrane potential process is not
ergodic on its state space.

Whereas the gain and correlation of the membrane po-
tentials are zero in the limit of strong excitation, the spike
trains reliably reflect the inputs. The firing rate is given by
rs =re/0 = u/(Vin — Vie) Where 6 = (Vin — Vie)/J, is the
number of inputs required to reach threshold from reset. This
gives the gain

drg
du

= (Vth - Vre)_l-
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Perhaps counterintuitively, the membrane potentials for
this model are independent, but the output spike trains are
correlated. This is possible because the times at which the
membrane potentials jump are correlated even though the
states that they occupy are not. To see this, suppose that
C.(tr) > 0 and that cell 1 spikes at time ¢. Then cell 1
necessarily received an excitatory input at time ¢. Although
conditioning on a spike in cell 1 does not affect the distribution
of V(¢ + 7), the fact that cell 1 received an input at time ¢
increases the probability that cell 2 receives an input near time
t 4+ t since C.(t) > 0. This in turn increases the probability
that cell 2 spikes near time ¢ + 7. In Appendix A, this argument
is used to derive the output cross-covariance function

Cy(1) = 072Cu(t) = (Vin — Vie) 2Cin(7). (8)

Spike count statistics over large time windows are known in
closed form for this model [9,15]. Variances and covariances
are scaled, limr_ o 02(T) = (Vin — Vie) 2 limy_ 00 02(T)
and limz_o ¥5(T) = (Vih — Vi) 2 limy_ oo ¥in(T) so that
spiking correlations over large time windows equal input
correlations

Tll)l’lgo ps(T) = Th—>ngo Pin(T).

However, spike count correlations over small windows are
reduced since, to first order in 7,

C,(0 672C.(0
pu(T) ~ O _ 0

T ~ 60~ pin(T).
Ty 0-1r, pin(T)

The model defined by Eq. (6) is a simplification of realistic
neuronal dynamics, even when excitation is strong. However,
we show next that these results accurately predict the statistics
of two LIFs receiving strong excitation.

V. ANALYSIS OF THE DIFFUSION APPROXIMATION

The model given by Eq. (1) is difficult to analyze outside
of the two limits discussed above, so we instead consider a
diffusion approximation

dv, Vi
_k:__k+'u~|—\/2an(l). )
dt T
@ O
V> st(”(? b ()|
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Here, ni(z) and n,(¢) are unbiased Gaussian noise with
(@i + 7)) =38(r) and 2D(m(O)m(t + 7)) = Cin(7).
The parameter, D = (J*r, + J?r;)/2, is the effective diffusion
coefficient of the input current. This approximation is valid
when ¢;(¢) and i;(¢) are independent Poisson processes [but
e1(t) and i,(¢) need not be independent] and J,,J; < Vi — V.
Although the inputs are assumed to be Poissonian, their
pairwise cross covariances need not be delta functions [16,17].
See [14,18-20] for a more in-depth look at the validity of the
diffusion approximation.

Univariate and bivariate spiking statistics for this model
have been studied extensively and the univariate moments
are known in closed form Refs. [21,22], but the statistics of
the membrane potentials have received comparatively little
attention. Below, we use the Fokker-Planck formulation from
Refs. [23,24] to derive membrane potential statistics in terms
of the input parameters and the output spiking statistics.

A. Stationary mean and variance of the membrane potentials

In Appendix B, we derive the steady-state mean and
variance of the membrane potentials

(Vk) = tm[,u - (Vth - Vre)rsl (10)

D - [(thz] - Vrz)/z - Tml"f(vth - Vre)]fmrs
— (Vi = Ve or} (11

var(Vy) = 1,

The stationary firing rate r; and the stationary density P, are
known in closed form and can also be obtained by solving a
boundary value problem [7,23,25].

The mean and variance of Vi(¢) can also be obtained by
integrating the stationary density, but Eqs. (10) and (11) are
easier to evaluate and have an intuitive interpretation: Taking
rg — 0 gives the mean and variance in the weak excitation
limit (compare to Sec. III). The remaining terms quantify the
effect of thresholding in terms of the firing rate.

The mean membrane potential and firing rate are shown
as a function of r, in Fig. 1(a). When r, is small, r; & 0
and (Vj) increases approximately linearly with r,, consistent
with the discussion in Sec. III. When r, is larger, r, increases

FIG. 1. (Color online) (a) Firing rate (r,, dashed red line, top), mean membrane potential ((V'), solid blue line, top) and gains (dr;/du,
dashed red line, bottom; d (V') /d u, solid blue line, bottom) as functions of the excitatory input rate r,. (b) Susceptibility magnitude of the firing
rate. (c) Susceptibility magnitude of the mean membrane potential. As the level of excitation increases, firing rates become more sensitive
and membrane potentials become less sensitive to perturbations. In all plots »; = 2 KHz and t,, = 20 ms. Voltage is scaled so that V;, =0
and Vy, = 1 with J, = J; = 1/30. Mean membrane potential has units (Vy, — V;.)~!, @ has units Hz, and susceptibility functions have units

(Vin — Vie)™! for x, and ms for xy.
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approximately linearly with r, and (Vi) =~ (Viy + Vie)/2,
consistent with Sec. IV.

B. Membrane potentials and firing rates are sensitive to input
current modulations in distinct regimes

We now examine the sensitivity of the firing rate and mean
membrane potential to modulations of the input current for
the diffusion approximation. This extends the results in the
limiting cases in Secs. I[IT and IV, where we found that the firing
rate and mean membrane potential are sensitive to modulations
of the input current in distinct regimes.

The gain of the membrane potential is given by taking the
derivative of Eq. (10) with respect to u to give

d{Vy)
du

dry
=Tn (1 - (Vth - Vre)_> . (12)
du

This expression and Fig. 1(a) indicate a dichotomy between the
regimes where r; and (V}) depend sensitively on the input bias:
When excitation is weak, the gain of the firing rates is nearly
zero and the gain of the membrane potentials is maximal,

drs d (Vi)

~(0 and X T,
du du

consistent with the results in Sec. III. When excitation is strong,
the gain of the firing rate is maximal and the gain of the
membrane potentials is approximately zero,

s =V ! ana L

du du
consistent with the results in Sec. IV. Equation (12) interpo-
lates these two regimes.

We now use linear response theory to analyze the sensitivity
of the neuronal responses to dynamic modulations of the input
current by examining the response to the bias current u(t) =
Wo + €€’ in Eq. (9). Using a complex perturbation allows us
to derive the amplitude and phase shift simultaneously [23].

The susceptibility functions xy(w) and xs(w) of the
mean membrane potential and firing rate are defined by the
asymptotic relations [26]

~ 0,

(Vi(@®)) = (Vo) + € xv(w)e' + o(e),
rs(t) = 1o + € x5 (@)™ + o(e),

where (Vj) and ry are the stationary mean membrane potential
and firing rate when € = 0.

The function y,(w) is known in closed form and its proper-
ties have been studied extensively [7,23,25]. In Appendix B,
we derive the membrane potential susceptibility in terms of
Xs(w) as

Tim

m[l — (Vin — Vi) xs(@)]. (13)

xv(w) =
Note that taking @ = 0 in Eq. (13) recovers Eq. (12) since
xs(0) =drg/dp and xv(0) = d(Vy)/dp. Taking the norm
squared on either side of Eq. (13) relates the sensitivity of
the firing rate and membrane potential to modulations of the
input current at frequency w,

Ixv(@)* = K@) 1 = (Vin = Vi) xs(@)I*, (14)
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where K (w) = [ K()e ™ dt =2/(1 + t2w?) is the
Fourier transform of the kernel K (¢) from Sec. III.

Figures 1(b) and 1(c) compare the amplitude of the spiking
and membrane potential susceptibility. When excitation is
weak

IXs(@)| 20 and |xv(w)| ~ /K ().
When excitation is strong
Ixs(@)| ~ (Vi — Vi)™ and [ xv(w)] ~ 0.

Thus, spiking and subthreshold dynamics reliably reflect
dynamic input modulations in distinct regimes.

C. Membrane potential and spiking correlations reflect input
correlations in distinct regimes

We now examine the spiking and membrane potential
correlations using the diffusion approximation. Confirming
the results in Secs. III and IV, we find that spiking and
membrane potential correlations reflect input correlations in
distinct regimes.

When input correlations are weak, linear response theory
can be used to derive the following approximation of the output
cross-covariance function [10,11,27,28]

Cs(@) ~ | x5(@)]? Cin(@) (15)
and, by an identical argument,
Cy(®) ~ | xv(®)]* Cin(w). (16)

The cross covariances can then be obtained by inverting the
Fourier transform. Combining Eq. (14) with Egs. (15) and
(16) provides insight into the relationship between spiking
and subthreshold correlations. When excitation is weak

Co(w)~0 and Cy(w)~ K(@)Cin(w),

consistent with the results in Sec. III [see Eqs. (4) and (5)].
When excitation is strong

Co(@) = (Vih — Vie) 2Cin(w) and  Cy(w) ~ 0,

consistent with the results in Sec. IV [see Egs. (7) and (8)].
Equation (14) interpolates these two limits. Figure 2 shows
how Cy(r) and Cy(tr) change with r, and confirms that
the cross covariance between the membrane potentials and
the cross covariance between the spike trains reflect input
correlations in opposite regimes.

Cross covariances are not normalized to account for noise
magnitude. In Fig. 3, we show how spike count correlations
and normalized membrane potential cross correlations change
with firing rate when r, is increased. In general, spike count
correlations increase with r, and r,, while membrane potential
cross correlations decrease, consistent with recordings from
the rat hippocampus [4]. Figure 3 shows that the linear
response and diffusion approximations provide an excellent
agreement to results obtained via direct simulation of Eq. (1).

So far, we have examined how changes in r, affect
correlations. In Fig. 4, we show that the overall trends are
the same if r; is varied simultaneously, but the decrease in
membrane potential correlations is less dramatic.
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(@) (a)
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40 3 R4 100 3o 4

FIG. 2. (Color online) (a) Cross covariance between spike trains
as r, increases. Inset compares linear response calculation (solid)
to the strong excitation limit [dashed line, from Eq. (8)] when
r. = 4.5 KHz. (b) Cross covariance between membrane potentials as
r. increases. Inset compares linear response calculation (solid) to the
weak excitation limit [dashed line, from Eq. (4)] whenr, = 2.15 KHz.
Parameters are the same as in Fig. 1 with input cross covariances
Ce(r) = Ioinreeilrl/rm/fin’ C,'('L') = Ioinriei‘r‘/n“/fina and Cei(t) =0
so that, from Eq. (2), Ci(t) = pi, De"V/%n /7, with input correlation
magnitude p;, = 0.1 and time scale t;, = 5 ms. Axes have units ms
for t, KHz for r,, Hz? for C,(z), and (Vy, — Vi)? for Cy (7). Firing
rates vary in range from 0.1 to 58 Hz.

D. Correlation time scales

In Fig. 2, the time scale of C;(t) when excitation is strong
appears faster than the time scale of Cy (7) when excitation is
weak. The membrane potential cross covariance is a low-pass
filtered version on the input cross covariance [see Eq. (4) and
also compare Eq. (16) with Fig. 1(c)]. On the other hand, the
input cross covariance is transferred faithfully to the spiking
cross covariance when excitation is strong [see Eq. (8) and
also compare Eq. (15) with Fig. 1(b)]. Thus, whenever the
time scale of Cj,(7) is faster than the membrane time constant
(Tin < Tw), Cy(t) will appear to decay faster than Cy (7).
However, the tails of Cs(t) and Cy(7) actually decay at the
same exponential rate as T — oo (not pictured, but see [27]).

This phenomenon can be explained intuitively by noting
that C(7) is determined by two interacting mechanisms when
input correlations are positive: (1) input correlations increase
the likelihood that both V(¢) and V,(t + 7) are near threshold
and (2) an input that pushes cell 1 over threshold near time #
increases the likelihood that cell 2 receives an input at time
t 4+ 7. The effect of the first mechanism on C,(tr) decays
asymptotically like e~*/™, whereas the effect of the second
mechanism decays like C,(7). Since the membrane potentials

(a) (b)
0.06 —— 5()
0.04 5
0.02 !

—- .

25 50 75 t (ms)  -50 0 50 100

FIG. 3. (Color online) (a) Spike count correlations and
(b) normalized membrane potential cross correlation at various firing
rates (see inset). Linear response approximations (solid line) are
compared to simulations with Poisson inputs (dashed line). Firing
rates were modulated by changing r,. All other parameters are as in
Fig. 2.
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(b)
R\(0)
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0.025

Te
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FIG. 4. (a) Spike count correlation over large time windows and
(b) peak membrane potential correlation plotted against firing rate as
r. and r; vary along linear paths: r, — 500 Hz = a(r; — 500 Hz) for
different slopes « (see inset). All other parameters are as in Fig. 2.

are nearly independent when excitation is strong, the first
mechanism has a much smaller effect in this regime and the
second mechanism determines the shape of the peak of C,(7).
However, the first mechanism dominates in the tail of Cg(7)
since its effect decays more slowly.

VI. DISCUSSION

We derived a number of results that relate subthreshold
membrane potential statistics of two uncoupled integrate-and-
fire neurons to their spiking statistics and to the statistics
of their inputs. We found that a cell’s firing rate and mean
membrane potential are sensitive to modulations of its input
currents in opposite regimes. We additionally showed that
correlations between the cells’ spike trains and membrane
potentials also reflect input correlations in opposite regimes.
Thus, care must be taken when interpreting the marginal and
joint statistics of underlying cell responses from experimental
recordings.

When examining spiking and membrane potential correla-
tions, we only considered a pair of uncoupled cells. Synaptic
and electrical coupling will impact spike train and membrane
potential correlations. Linear response theory could be used to
extend our methods [27,28].

A. Comparing spiking and membrane potential correlations
when input correlations change

In all of the results plotted above, we fixed input correlations
while varying the excitatory and inhibitory input rates r, and
r;. This assumption helped isolate changes in spiking and
membrane potential correlations that were due to nonlinear
neuronal filtering. However, in vivo input correlations can
change with stimulus and behavioral states. Thus, one should
not necessarily expect that input correlations remain fixed as
other parameters change.

As discussed in Sec. V, spiking and membrane potential
correlations generally change oppositely with changes in r,
and r;. However, they both increase with an increase of
input correlations. In Fig. 5, we consider a situation where
spiking and membrane potential correlations are computed for
randomly sampled points in input parameter space. When r,
and r; are drawn from wide distributions and the magnitude
of input correlations is drawn from narrower distributions
[Fig. 5(a)], spiking and membrane potentials vary inversely
with one another. However, when r, and r; are drawn from
narrow distributions and the magnitude of input correlations
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(b)

FIG. 5. (Color online) Spike count correlation over large time
windows versus peak membrane potential correlation for 500 ran-
domly generated excitatory and inhibitory input rates and correla-
tions. (a) Input rates were drawn from wide uniform distributions (r, €
[2,4] KHz and r; € [0,1.75] KHz) and input correlations from narrow
uniform distributions (p,. € [0.15,0.2], p;; € [0.15,0.2], and p,; =
0). (b) Input rates were drawn from narrower uniform distributions
(r. € [2.2,2.4] KHz and r; € [1.3,1.4] KHz) and input correlations
from wider uniform distributions (p., € [0,0.2], p;; € [0,0.2], and
pei = 0). Parameters are the same as in Fig. 2 except input cross
covariances are C,(7) = peeree V™ /5, Ci(x) = pyrie™ /™ /i,
and C,;(t) = 0.

is drawn from wider distributions [Fig. 5(a)], spiking and
membrane potentials vary together. Thus, despite our results,
spiking and membrane potential correlations need not change
oppositely with input statistics in situations where input
correlations are modulated.

B. A spiking model with active conductances

The LIF model we analyzed has the advantage that
subthreshold activity is easily separated from spiking activity.
However, experimental recordings, such as those of local field
potentials or the light emitted by voltage sensitive dyes, often
represent a combination of spiking and subthreshold activity.
Additionally, the sharp threshold and lack of active currents
in the LIF can yield anomalous response properties [29]. To
test whether our results hold for a spiking model with active
conductances, we used an exponential integrate-and-fire (EIF)
model in which the membrane potential is held at 40 mV for
1.5 ms at each spike. We refer to this model as a “spiking EIF.”
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A representative output is shown in Fig. 6(c) and the model is
fully described in Appendix C.

Figure 6(a) shows the mean membrane potential and an
estimate of the gain for this model as a function of r,. The
estimated gain decreases for large r,, but does not approach
zero. This is likely due to the contribution of spikes to the
mean membrane potential. Figure 6(b) shows that correlations
between the membrane potential traces of two spiking EIF
cells decrease with r,, similar to the LIF.

C. Implications for pooled recordings

Recordings of local field potentials and voltage sensitive
dye signals can represent the pooled activity of large popula-
tions of cells. The correlation between two such pooled signals
is generally larger than the correlations between the activity
individual cells in the recorded populations [30-35]. We model
the pooled signals by summing the individual membrane
potentials X (1) = Z']’.:l V}‘(z), k = 1,2.If the populations are
homogeneous, then the cross correlation between the summed
activities is given by Ref. [34]

Ry(7) Ry ()

R = =
= O+ - RO RO

+0O(1/n). (17)

If the population is heterogeneous or if some cells’ membrane
potentials contribute more strongly to the pooled signals,
Ry (7) can be replaced by a weighted average of the cross
correlations in Eq. (17) [34]. For large populations (n > 1),
this amplification of correlations can mask the decrease in
correlations shown in Fig. 6(b) since even when individual
cells are weakly correlated, the pooled signals will be strongly
correlated. This effect is illustrated for the spiking EIF model
in Fig. 6(d): Even though the correlation between individual
membrane potentials decreases quickly and dramatically with
re, the correlation between two pooled recordings decreases
only modestly and slowly with r,. For larger n, the decrease is
reduced even further.

(@) (b) (© (d)
-55 R, (1) §40 Ry (1)
< -60 0.075 g 0 ,Jl/ 0.75
65 0.05 = 0.5 “
0.25 “
0.025 500 A QM A
30 yee
LR,
= -75 75 \\,..vw““"
< 10
0 75> 25 o 25,

2 3 4 A

Te

FIG. 6. (Color online) (a) Mean membrane potential and an approximation to the gain (found by taking A(V)/Au for the points sampled)
for the spiking EIF model as a function of r,. Dots show sampled points, which are interpolated linearly. (b) Membrane potential cross
correlation for a spiking EIF model plotted for various values of r,. (c) A sample voltage trace (taken at r, = 2.7 KHz) and the trajectory of a
single spike for the spiking EIF. (d) Cross correlations between two pooled recordings of 200 membrane potential traces, obtained by applying
Eq. (17) to the cross correlations in (b) with n = 200. Note that correlations are at least an order of magnitude larger here than in (b) due to
pooling. Input parameters are as in Fig. 2.
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D. Comparison with experimental results

Experimentally, spiking correlations were found to increase
while membrane potential correlations decrease with an
increase in firing rate associated at the onset of seizure-like
activity [4]. This is consistent with the results in Sec. VC.
However, we note that membrane potential correlations in [4]
were computed by deleting a few milliseconds surrounding
each spike from the membrane potential traces. It is not clear
what effect this deletion has on the computed correlations and
whether it compromises the applicability of our results to their
findings.

In Ref. [2], membrane potential cross correlations were
compared to spiking cross covariances in vivo. The membrane
potential cross correlations were obtained while the cells
were hyperpolarized by a constant injected current to prevent
spiking. Cross covariances between the spike trains were
obtained while the cells were depolarized by a constant
injected current to promote spiking. These two conditions
are analogous to the weak and strong excitation conditions
discussed above: Our results are preserved when “weak
excitation” is replaced by “strong hyperpolarizing current”
and “strong excitation” is replaced by “strong depolarizing
current.” The authors found that membrane potential cross
correlations in the hyperpolarized state have alonger time scale
than spiking correlations in the depolarized state, consistent
with our results in Sec. V D.

Membrane potential cross correlations were also reported in
Ref. [3] under hyperpolarized and depolarized conditions, but
spiking was pharmacologically suppressed in these recordings.
Since the decrease of Ry (t) with r, reported above depends
on a threshold and reset, our results do not apply when spiking
is suppressed.

Integrate-and-fire (IF) models provide a minimal descrip-
tion of membrane and spiking dynamics. However, the
behavior of networks of IF neurons is frequently in good
agreement with biological neuronal networks [28,36]. We
therefore expect that our results can provide further insight
into the dynamics of neuronal networks.
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APPENDIX A: ANALYSIS OF THE STRONG
EXCITATION LIMIT

We analyze the model considered in Sec. IV whose
membrane potential is defined by Eq. (6). Here we consider the
general case and do not assume that the cells are dynamically
identical or that they receive statistically identical inputs. This
introduces the need for subscripted notation (e.g., Vink, 7e k>
etc. for k = 1,2).

After being reset to V() = Vi x, the membrane potential is
incremented by J, i at each input spike and therefore remains
in the state space I'y = {Viex, Viex + Jeks - -+ s Viek + Ok ek}
where 6y = | (Vinx — Vier)/ Jex] 1s the number of input spikes
to bring cell k£ from reset to threshold and |- | gives the integer
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part of the argument. Thus, the bivariate membrane potential
process (Vi(t), Va(2)) has state space I' = I'} x I';.

Cell k spikes after every 6 excitatory inputs. Thus, the firing
rate is easily seen to be ry = 1, i /6.

The membrane potential at any two points in time are related
by

Vi(t1) = Vi(to) ®k JexNe(10,11), (Al

where N, (fo,11) = ftf)‘ er(t)dt is the number of excitatory
inputs in the open interval (#p,#;) and &; represents modular
addition on the discrete state space ['y.

We now show that the membrane potentials sampled at any
two points in time have a bivariate uniform distribution.

Theorem 1. Consider the two-cell IF model defined by
Eq. (6) with resets at V, x and thresholds at Vi, ;. Assume that
the membrane potential process is ergodic with finite memory
in the sense that there exists a steady-state probability mass
function p : I' x R? — R¥ such that

p(ui,v;ty,h) = ZILIEOPI“[VKH +1) =v,Va(ta + 1)
= 02| V1(0) = uy, V2(0) = us]

and p(vy,va;t,t) > Oforallt,t, € R* and (vi,v2),(uy,uy) €
I1. Then p is uniform with

p(ui,v2511,10) = (6162)"

for all t;,t, € R" and (v;,v,) € I1.

Proof. Suppose (v1,v2),(wy,w,) € ITand t;,/, € R*. From
Eq. (Al), the event that (Vi (#; + 1), Va(t2 + 1)) = (vy,v2) given
(V1(0), V»2(0)) = (0,0) has the same probability as the event that
Jo ik (Ng, (t +t)mod 6;) = Vi(t + t)fork = 1,2. By the same
reasoning, this is in turn has the same probability as the event
that (Vi(ty + 1), Va(t2 + 1)) = (w1, w2) given (V1(0),V2(0)) =
(w1 @1 —vi, w2 &2 —v7). Thus,

p(ui,va;ty,0) = tlgglo Pr[Vi(ti +1) = v, Valta + 1)
= 2| V1(0) =0, V»(0) = 0]
=Pr[Vi(t1 + 1) = wy, Va(ta + 1) = w
[V1(0) = wy @1 —v1, V2(0) = wy @2 —1v2]
= p(wy,wy; ty,0)

and therefore p is uniform. Since p is a probability mass
function with respect to its first two arguments, we may
conclude that

1 1

card(Tl) _ 6,6,

pvi, v titp) =

|

The assumption of ergodicity with finite memory made in
Theorem 1 essentially assures that the bivariate distribution of
the membrane potentials approaches a steady state that does
not depend on initial conditions. We expect this assumption to
hold when inputs are not perfectly correlated and do not have
infinite memory. For example, if inputs are delta-correlated
Poisson processes, this assumption is straightforward to verify.
However, the assumption can be violated by inputs that exhibit
infinite-time-scale deterministic trends. For example, if the
input to one cell is perfectly periodic (an input spike arriving
every T ms) with a random and uniformly distributed phase,
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then the input process is stationary, but the assumption is
violated.

Since the components of a bivariate uniform distribution are
independent, we may conclude from Theorem 1 that V;(#;) is
independent from V;(#,) for any times #; and #,. From this fact,
we can derive the output cross-covariance function as follows.
First note that the cross covariance can be written as [37]

Cy(1) = 5113(1)3*2 Pr[ Ny, (t,t +8) > O,N,,(t + .t
+T+8) > 0]_rs,1rs,2- (A2)

Now note that a spike occurs in si(¢) at time #y only if an
excitatory input arrives [from e (f)] at time fy and Vi (%) €
[Vin.k — Je.k, Vinl. Thus, Eq. (A2) can be rewritten as

Cs(r) = ;i_r)r(l)S_z Pr{Vi(t) € [Vin — Je, Vil Ne, (1.1 + 0)

> 0,Va(t + 1) € [Vin — Je, V], N, (2
Tt +74+8) > 0] —rg1rs50. (A3)

Finally, since the membrane potentials are independent and
uniformly distributed, this becomes

Cy(7) = (6,6,)7" (%in}) 82PN, (t,t +8) > O,N,,(t

+10+T+68)>0] - reylreyz)
= (6162)'Co(2).

In the text, we assume that Vi, ; — Viex is an integer
multiple of J,; for k = 1,2. This assumption can be made
without loss of generality since when it is not met Vi
can be replaced by Vi + 6iJ.x without affecting the
dynamics. Under this assumption, 6y = (Vinx — Viex)/Jek
and therefore 7k = Joxter/(Vingk — Viex) = tx/Vink —
Viex) and Cy(t) = (6162) 7' Ce(t) = (Vin1 — Vie)) ™ (Vinp —
Vre,z)‘lCin(t). Additionally, the mean membrane potential
is given by (Vi) = (Vink + Vier)/2 since its distribution is
uniform on I';.

APPENDIX B: DERIVATION OF MEMBRANE POTENTIAL
STATISTICS FOR THE DIFFUSION APPROXIMATION

We now derive the expressions from Sec. V that relate
membrane potential statistics of the diffusion approximation to
the firing rate and susceptibility. Since we focus on univariate
statistics here, we omit subscripts that indicate neuron number
[i.e., we use V(¢) in place of Vi (¢)]. Though we do not discuss
lower barriers on the membrane potentials in the text, we allow
for the possibility of a reflecting barrier at some Vi, < Ve in
our calculations below. The unbounded case can be recovered
by setting Vj, = —oo. However, our numerical calculations
require a finite lower barrier. In all figures, the lower barrier
was set so low that it did not significantly affect the statistics
(see Appendix D).

Much of our analysis uses standard properties of bilateral
Laplace transforms, defined by

LLFONs) = Fis) = / Fevdx.

\/Yhen Xisa randoln variable with density f, then f(O) =1,
f7(0) = (X), and f"(0) = (X?).
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From Refs. [23,24], the stationary density and probability
flux, Py(v) and Jy(v), of V() = Vi (¢) from Eq. (9) obey

P _ Lo/t — WP+ o]
OB e

90 D M) ro 0

aJ
—8—;’ = 1[8(V = Vi) = 8(V — Vi)l

We first derive the stationary mean of the membrane potential.
Taking the bilateral Laplace transform on either side of these
equations gives

Sj(\) = rs(ev‘hs - eVreS)’
which can be solved algebraically to obtain

3P, Ty oy .
3_0 = T(1+ sD)Py — (¥t — Vet (BI)
S S

Taking s — 0 yields an expression for the the mean membrane
potential, given in Eq. (10).

To derive the variance of the membrane potentials, first
differentiate Eq. (B1) to obtain

92 Py Py
—_— =T
052 " ds

7:m s s
- s—z[eVm‘ (Vi — 1) — " (s Vie — D11y

(u+sD)+1,DPy

which, upon taking s — 0, gives

(V) = (u(V) + D — L(Va — V2)ry),

which, using Eq. (10), yields the expression for var[V(¢)] =
(V2) — (V)? given in Eq. (11).

Similar methods can be used to derive the response prop-
erties of the mean membrane potential. Given a periodically
perturbed bias u(t) = po + €€, the probability density can
be written to first order in € as P(v,t) = Py(v) + € P;(v)e!®" +
o(¢e) and similarly for the flux J(v,1) = Jo(v) + € J;(v)e’®"
where Py and Jy are the solutions when € = 0 (see above).
Isolating the first-order terms of the time-dependent Fokker-
Planck equation gives [23,24]

il 1[(/ YP, + Jy — Pyl

—— = =/t - — Pol,
e D Ho) 1 0
aJ;

B iwP + xs(@)[8(v — Vin) — 6(v — Vee)], (B2)

where y (w) is the susceptibility of the firing rate, which
satisfies r,(t) = ro + € xs(w)e'®, where ry is the firing rate
when € = 0. The susceptibility xy(w) of the mean membrane
potential is defined by (V (1)) = (Vy) + € xv(w)e'® + o(e),
where (V) = f‘X:‘ v Py(v)dv is the stationary mean membrane
potential when € = 0 and is given by Eq. (10). The suscepti-
bility satisfies

Vin .
xv(w) = / vPi(v)dv = P{(O). (B3)
Vi

b
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Taking the Laplace transform on either side of Eq. (B2)
gives

~ 1 (103P PO
sPhh=—|—————-whP+1—-F

sTi = Py + (@) = '),

which can be solved to obtain

1 0P io\ ~
———=\o+sD—-— | P,
T, 0S s

1 ~
— (™ =)y (@) + Po.

Taking the limit as s — O on both sides of this equation and
using Eq. (B3) yields the expression for xy (@) givenin Eq. (13)

Since r, and x,(w) are known in closed form Refs. [7,25],
the expressions derived above effectively give xy () in closed
form. In addition, the expressions link the statistics of the
membrane potentials to the statistics of the output spike trains.

APPENDIX C: A SPIKING EIF MODEL

We now describe the spiking EIF model used for the
simulations in Fig. 6. The subthreshold membrane potentials
obey [23,38]

D _ Bz Ve | oL eInr 4 ety = Jyia(t), (1)

dt T

where ¢;(¢) and i;(¢) are defined as in the methods above.
Each time the membrane potential reaches threshold at Vi,
it is held there for a period of time gy, simulating a spike,
and is then reset to V.. Active currents are activated when the
membrane potential approaches Vr and pull the membrane
potential toward Vy,.

PHYSICAL REVIEW E 84, 051902 (2011)

The parameters for Fig. 6 are t,, = 20 ms, Ey = —60 mV,
Vr = -53mV,Ar =4mV, Vy =40mV, V., = —70mV, and
Tepike = 1.5 ms. Note that the absolute refractory period only
lasts for 1.5 ms, but a relative refractory period is introduced
by the fact that V. < Ej.

APPENDIX D: NUMERICAL METHODS
AND SIMULATIONS

Spiking statistics for the LIF were calculated using the
threshold integration methods from Ref. [23]. Membrane
potential statistics for the LIF were calculated from spiking
statistics using the equations derived in Appendix B. All
threshold integration calculations use a mesh size of Av =
0.0005 when Vi, = 1 and Ve = 0. A lower bound of V},, = —3
was chosen to have an insignificant impact on the statistics
calculated. Cross covariances and cross correlations were
obtained by taking the inverse Fourier transform on either
side of Egs. (15) and (16). Spike count correlations were
obtained from autocovariances and cross covariances using
the identities [6,10,11,37]

™\

JIAT = 1tDC()dr
[TA(T = [t)A(0)dr

5(0
50

~

8

ps(T) = and  lim py(T) =
T—o0

~

Monte Carlo simulations for Figs. 3 and 6 were run for 500 s
and 500 trials. Correlated Poisson inputs were generated
using the a thinning and jittering algorithm described in
Refs. [9,16] and Eqgs. (1) and (C1) were each integrated
numerically using a first-order Euler method with time bin
At = 0.05 ms.

C and MATLAB codes for all figures are available from the
first author upon request.

[1] E. Stern, D. Jaeger, and C. Wilson, Nature (London) 394, 475
(1998).
[2] I. Lampl, I. Reichova, and D. Ferster, Neuron 22, 361 (1999).
[3] M. Okun and I. Lampl, Nature Neurosci. 11, 535 (2008).
[4]1J. Ziburkus, J. Cressman, E. Barreto, and S. Schiff,
J. Neurophysiol. 95, 01378 (2006).
[5] J. Dorn and D. Ringach, J. Neurophysiol. 89, 2271 (2003).
[6] T. Tetzlaff, S. Rotter, E. Stark, M. Abeles, A. Aertsen, and
M. Diesmann, Neural Comput. 20, 2133 (2008).
[7] B. Lindner, Ph.D. thesis, Humboldt University, 2002.
[8]1 A. Yaglom, An Introduction to the Theory of Stationary Random
Functions (Dover, New York, 2004).
[9] R. Rosenbaum and K. Josi¢, Neural Comput. 23, 1261 (2011).
[10] J. de la Rocha, B. Doiron, E. Shea-Brown, K. Josié¢, and
A. Reyes, Nature (London) 448, 802 (2007).
[11] E. Shea-Brown, K. Josié, J. de la Rocha, and B. Doiron, Phys.
Reyv. Lett. 100, 108102 (2008).
[12] R. Rosenbaum, J. Ma, F. Marpeau, A. Barua, and K. Josi¢,
J. Math. Biol., 1 (2011).
[13] H. Tuckwell, Introduction to Theoretical Neurobiology: Linear
Cable Theory and Dendritic Structure, Vol. 1 (Cambridge
University Press, Cambridge, England, 1988).

[14] M. Helias, M. Deger, S. Rotter, and M. Diesmann, Front
Neurosci. 5, 19 (2011).

[15] R. D. Vilela and B. Lindner, Phys. Rev. E 80, 31909 (2009).

[16] N. Bauerle and R. Griibel, Astin Bulletin 35, 379 (2005).

[17] D. Johnson, e-print arXiv:0811.3713.

[18] L. Ricciardi and C. Smith, Diffusion Processes and Related
Topics in Biology (Springer, New York, 1977).

[19] M. J. E. Richardson and R. Swarbrick, Phys. Rev. Lett. 105,
178102 (2010).

[20] M. Helias, M. Deger, S. Rotter, and M. Diesmann, PLoS
Comput. Biol. 6, ¢1000929 (2010).

[21] A. Siegert, Phys. Rev. 81, 617 (1951).

[22] A. Burkitt, Biol. Cybern. 95, 1 (2006).

[23] M. J. E. Richardson, Phys. Rev. E 76, 021919 (2007).

[24] M. Richardson, Biol. Cybern. 99, 381 (2008).

[25] N. Brunel, F. S. Chance, N. Fourcaud, and L. F. Abbott, Phys.
Rev. Lett. 86, 2186 (2001).

[26] H. Risken, The Fokker-Planck Equation: Methods of So-
lution and Applications, Vol. 18 (Springer Verlag, Berlin,
1996).

[27] S. Ostojic, N. Brunel, and V. Hakim, J. Neurosci. 29, 10234
(2009).

051902-9


http://dx.doi.org/10.1038/28848
http://dx.doi.org/10.1038/28848
http://dx.doi.org/10.1016/S0896-6273(00)81096-X
http://dx.doi.org/10.1038/nn.2105
http://dx.doi.org/10.1152/jn.01378.2005
http://dx.doi.org/10.1152/jn.000889.2002
http://dx.doi.org/10.1162/neco.2008.05-07-525
http://dx.doi.org/10.1162/NECO_a_00116
http://dx.doi.org/10.1038/nature06028
http://dx.doi.org/10.1103/PhysRevLett.100.108102
http://dx.doi.org/10.1103/PhysRevLett.100.108102
http://dx.doi.org/10.3389/fnins.2011.00019
http://dx.doi.org/10.3389/fnins.2011.00019
http://dx.doi.org/10.1103/PhysRevE.80.031909
http://dx.doi.org/10.2143/AST.35.2.2003459
http://arXiv.org/abs/arXiv:0811.3713
http://dx.doi.org/10.1103/PhysRevLett.105.178102
http://dx.doi.org/10.1103/PhysRevLett.105.178102
http://dx.doi.org/10.1371/journal.pcbi.1000929 ignorespaces 
http://dx.doi.org/10.1371/journal.pcbi.1000929 ignorespaces 
http://dx.doi.org/10.1103/PhysRev.81.617
http://dx.doi.org/10.1007/s00422-006-0068-6
http://dx.doi.org/10.1103/PhysRevE.76.021919
http://dx.doi.org/10.1007/s00422-008-0244-y
http://dx.doi.org/10.1103/PhysRevLett.86.2186
http://dx.doi.org/10.1103/PhysRevLett.86.2186
http://dx.doi.org/10.1523/JNEUROSCI.1275-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.1275-09.2009

ROBERT ROSENBAUM AND KRESIMIR JOSIC

[28] B. Lindner, B. Doiron, and A. Longtin, Phys. Rev. E 72, 61919
(2005).

[29] W. Wei and F. Wolf, Phys. Rev. Lett. 106, 088102 (2011).

[30] P. Bedenbaugh and G. Gerstein, Neural Comput. 9, 1265
(1997).

[31] E. Stark, A. Globerson, 1. Asher, and M. Abeles, J. Neurosci.
28, 10618 (2008).

[32] H. Super and P. Roelfsema, in Progress in Brain Research:
Development, Dynamics and Pathology of Neuronal Networks,
edited by J. van Pelt, M. Kamermans, C. N. Levelt, A. van
Ooyen, G. J. A. Ramakers, and P. R. Roelfsema (Elsevier,
New York, 2004), p. 263.

PHYSICAL REVIEW E 84, 051902 (2011)

[33] Y. Chen, W. Geisler, and E. Seidemann, Nat. Neurosci. 9, 1412
(2006).

[34] R. Rosenbaum, J. Trousdale, and K. Josi¢, Front Neurosci. 5, 58
(2011).

[35] R. Rosenbaum, J. Trousdale, and K. Josié¢, Front Comput.
Neurosci. 4, 9 (2010).

[36] A. Rauch, G. La Camera, H. Liischer, W. Senn, and S. Fusi,
J. Neurophysiol. 90, 1598 (2003).

[37] D. Cox and V. Isham, Point Processes (Chapman and Hall/CRC,
London, 1980).

[38] N. Fourcaud-Trocmé, D. Hansel, C. Van Vreeswijk, and
N. Brunel, J. Neurosci. 23, 11628 (2003).

051902-10


http://dx.doi.org/10.1103/PhysRevE.72.061919
http://dx.doi.org/10.1103/PhysRevE.72.061919
http://dx.doi.org/10.1103/PhysRevLett.106.088102
http://dx.doi.org/10.1162/neco.1997.9.6.1265
http://dx.doi.org/10.1162/neco.1997.9.6.1265
http://dx.doi.org/10.1523/JNEUROSCI.3418-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.3418-08.2008
http://dx.doi.org/10.1038/nn1792
http://dx.doi.org/10.1038/nn1792
http://dx.doi.org/10.3389/fnins.2011.00058
http://dx.doi.org/10.3389/fnins.2011.00058
http://dx.doi.org/10.1152/jn.00293.2003

